

Synthesis and Fungicidal Evaluation of 2-Arylphenyl Ether-3-(1*H*-1,2,4-triazol-1-yl)propan-2-ol Derivatives

Guan-Ping Yu,^{‡,§,†} Liang-Zhong Xu,^{*,†} Xu Yi,[†] Wen-Zhao Bi,[†] Qi Zhu,[†] and Zhi-Wei Zhai[†]

[†]College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China, [‡]Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China, and [§]Graduate School of the Chinese Academy of Sciences, Beijing 100039, China

A series of novel 2-arylphenyl ether-3-(1*H*-1,2,4-triazol-1-yl)propan-2-ol derivatives were designed and synthesized as candidate fungicides. The new compounds were identified by ¹H NMR spectroscopy and element analysis. Their antifungal activities were evaluated. They exhibited excellent antifungal activities against five common pathogens in comparison with the commercial fungicides tebuconazole and difenoconazole. The antifungal activities of three new triazole alcohol compounds were compared with those of tebuconazole and difenoconazole at a concentration of 1 μ g/mL.

KEYWORDS: Triazole alcohol; aryl ether; fungicides; synthesis

INTRODUCTION

Many 1,2,4-triazole derivatives possess potent pesticidal (1), herbicidal (2), and antifungal (3-5) activities, such as tebuconazole, flutriafol, hexaconazole and cyproconazole (**Figure 1**) (6-9)and the structure unit "(1*H*-1,2,4-triazol-1-yl)ethanol" is key to their bioactivities. These compounds represent the most important category of fungicides to date and have long protective and curative activity against a broad spectrum of foliar, root, and seedling diseases caused by many ascomycetes, basidiomycetes, and imperfect fungi (10). In addition, the arylphenyl ether group is a highly efficient pharmacophore and is widely used in pesticide and drug molecular design (11, 12). For example, difenoconazole (**Figure 2**) (12), discovered by Ciba-Geigy (U.K.) Limited, as fungicide offers a high level of control against soilborne dwarf bunt, for which chemical control was not previously available.

Bioisosterism (13) is an effective way to design bioactive compounds. To find some valuable compounds, a series of novel 2-arylphenylether-3-(1*H*-1,2,4-triazol-1-yl)propan-2-ol derivatives V were designed by introducing the arylphenyl ether group into the pharmacophore (1*H*-1,2,4-triazol-1-yl)ethanol (Figure 2). At first, compounds V1 and V20–V27 (14, 15) (Figure 3) were synthesized in our laboratory. The results of preliminary biological tests against *Gibberella zeae*, *Alternaria solani*, *Fusarium oxysporum*, *Physalospora pircola*, and *Cercospora arachidicola* showed that all of these compounds, especially V1, possess higher antifungal activities comparable to those of commercial fungicides.

To further amplify the structure–activity relationship (SAR) between R^1 and R^2 of V and the resulting activity and to find valuable lead compounds with high antifungal activity, subsequent

optimization of V was focused on varying the substituents R^1 and R^2 while retaining the arylphenyl ether group. In this paper, we describe the synthesis and antifungal activities of some novel triazole alcohol compounds containing an arylphenyl ether group (Schemes 1–3 and Table 1).

MATERIALS AND METHODS

Synthetic Procedures. Proton NMR spectra were obtained at 500 MHz using a Bruker AC-500 spectrometer in CDCl₃ or DMSO- d_6 solution with TMS as internal standard. Chemical shift values (δ) are given in parts per million. Elemental analyses were determined on a Perkin-Elmer 240 elemental analyzer. Melting points were taken on a Yanaco-MP-500 microscopic melting apparatus and are uncorrected. Yields are not optimized.

General Procedure To Synthesize Intermediate 1-((2-(4-(4-Halogenated phenoxy)-2-chlorophenyl)oxiran-2-yl)methyl)-1*H*-1,2,4-triazole (IV-1). The intermediates II-1 were prepared according to a literature procedure (*16*). The substituted acetophenones were reacted with bromine in anhydrous diethyl ether. Two intermediates II-1 were prepared in this manner: II-1a, $R^1 = Cl$, yield 95.8%, mp 65–66 °C (lit. (*17*) yield 89.1%, mp 64–65 °C); and II-1b, $R^1 = F$, yield 90.1%, mp 44–46 °C, ¹H NMR (CDCl₃, 500 MHz) δ 6.70–7.77 (m, 7H, Ar–H), 4.54 (s, 2H, CH₂Br).

To the solution of 2-bromo-1-(2-chloro-4-(4-halogenated phenoxy) phenyl)ethanone (**II-1**) (0.1 mol) and 1*H*-1,2,4-triazole (8.28 g, 0.12 mol) in ethyl acetate (70 mL) was added potassium carbonate (16.56 g, 0.12 mol); the resulting mixture was refluxed for 6 h and filtered, and the filtrate was condensed. The residual was recrystallized with ethyl acetate to give intermediate **III-1**: **III-1a**, R¹ = Cl, yield 67.3%, mp 151–153 °C, ¹H NMR (CDCl₃, 500 MHz) δ 8.43 (s, 1H, triazole–H), 8.01 (s, 1H, triazole–H), 6.68–7.69 (m, 7H, Ar–H), 4.89 (s, 2H, CH₂); **III-1b**, R¹ = F, yield 60.5%, mp 125–126 °C, ¹H NMR (CDCl₃, 500 MHz) δ 8.23 (s, 1H, triazole–H), 7.99 (s, 1H, triazole–H). 6.76–7.81 (m, 7H, Ar–H), 4.92 (s, 2H, CH₂).

^{*}Author to whom correspondence should be addressed [telephone: + 86-(0)532-84023177; fax: + 86-(0)532-84023177; e-mail: qknhs@ yahoo.com.cn].

Figure 1. Structures of hexaconazole, cyproconazole, flutriafol, and tebuconazole.

 $\label{eq:Figure 2.} \ensuremath{\text{ Figure 2. Design strategy of the title compounds.}}$

Figure 3. Structures of V1 and V20-27.

To the mixture of **III-1** (0.1 mol), trimethylsulfoxonium iodide (26.4 g, 0.12 mol), and triethylbenzylammonium chloride (0.3 g) in 100 mL toluene was added dropwise the aqueous sodium hydroxide (20%, 80 g). After the resulting mixture had been stirred at 60 °C for 3–4 h, the organic phase was separated and condensed. The residual was recrystallized with ethyl acetate to afford intermediate **IV-1**: **IV-1a**, $\mathbb{R}^1 = \mathbb{C}$ l, yield 80%, mp 70–71 °C, ¹H NMR (CDCl₃, 500 MHz) δ 7.89 (s, 1H, triazole–H), 6.55–7.22 (m, 7H, Ar–H), 4.64 (d, 1H, ²J_{HH} = 15 Hz, triazole–CH₂), 4.63 (d, 1H, ²J_{HH} = 15 Hz, triazole–CH₂), 2.72 (d, 1H, ²J_{HH} = 4.5 Hz, O–CH₂); **IV-1b**, $\mathbb{R}^1 = \mathbb{F}$, yield 75.2%, mp 93–94 °C, ¹H NMR (CDCl₃, 500 MHz) δ 7.87 (s, 1H, triazole–H), 7.65 (s, 1H, triazole–H), 7.65 (s, 1H, triazole–H), 7.65 (s, 1H, triazole–H), 7.65 (s, 1H, triazole–H), 6.58–7.42 (m, 7H, Ar–H), 4.63 (d, 1H, ²J_{HH} = 15 Hz, triazole–CH₂), 4.62 (d, 1H, ²J_{HH} = 15 Hz, triazole–CH₂), 2.67 (d, 1H, ²J_{HH} = 4.5 Hz, O–CH₂), 2.72 (d, 1H, ²J_{HH} = 4.5 Hz, triazole–CH₂), 2.67 (d, 1H, ²J_{HH} = 4.5 Hz, O–CH₂), 2.72 (d, 1H, ²J_{HH} = 4.5 Hz, O–CH₂), 2.67 (d, 1H, ²J_{HH} = 4.5 Hz, O–CH₂), 2.72 (d, 1H, ²J_{HH} = 4.5 Hz, O–CH₂), 2.67 (d, 1H, ²J_{HH} = 4.5 Hz, O–CH₂), 2.67 (d, 1H, ²J_{HH} = 4.5 Hz, O–CH₂).

General Procedure To Synthesize Intermediate 2-(4-(4-Halogenated phenoxy)-2-chlorophenyl)-2-methyloxirane (IV-2). According to the above procedure from III-1 to IV-1, compound IV-2 was synthesized from I: IV-2a, R¹ = Cl, yield 86.5%, mp 46–48 °C, ¹H NMR (DMSO- d_6 , 500 MHz) δ 6.97–7.47 (m, 7H, Ar–H), 3.02 (d, 1H, ² J_{HH} = 5 Hz, O–CH₂), 2.77 (d, 1H, ² J_{HH} = 5 Hz, O–CH₂), 1.55 (s, 3H, CH₃); IV-2b, R¹ = F, yield 76.2%, orange liquid, ¹H NMR (CDCl₃, 500 MHz) δ 6.95–7.57 (m, 7H, Ar–H), 3.04 (d, 1H, ² J_{HH} = 5 Hz, O–CH₂), 2.79 (d, 1H, ² J_{HH} = 5 Hz, O–CH₃).

General Procedure To Synthesize Intermediate IV-3. The intermediates **II-3** were prepared according to the method given in ref (*18*). Intermediate **II-3** (10 mmol) and trimethylsulfonium methylsulfate (2.26 g, 12 mol) were dissolved in 20 mL of ethyl ether; potassium hydroxide (2.24 g, 40 mmol) powder was added to the solution at 0 °C, and then the mixture was heated to boiling (5 h). The mixture was cooled, poured into water, acidified with 30% H₂SO₄ to pH 7–8, and extracted with ethyl ether. The organic extract was washed with water twice, dried with sodium

sulfate, and filtered. The solvent was evaporated, and the residue was recrystallized from acetone to give IV-3. The melting points and yields of intermediate II-3 and IV-3 are listed in Table 2, and their ¹H NMR data are listed in Table 3.

General Procedure for Target Compounds V1–V27. A mixture of epoxide IV (5 mmol), potassium carbonate (0.69 g, 5 mmol), and ring cleavage (6 mmol) was refluxed for 5-6 h in 20 mL of DMF. The organic phase was separated and condensed, and the residual was purified by vacuum column chromatography on silica gel to afford the desired compounds V1–V27.

Data for V1: see ref (14)

Data for V2: yield 71.5%; white solid, mp 85–88 °C; ¹H NMR (CDCl₃, 500 MHz) δ 8.12 (s, 1H, triazole–H), 7.96 (s, 1H, triazole–H), 6.70–7.49 (m, 10H, Ar–H, imidazole–H), 5.50 (s, 1H, OH), 5.40 (d, 1H, ²J_{HH} = 14.2 Hz, triazole–CH₂), 4.64 (d, 1H, ²J_{HH} = 14.1 Hz, imidazole–CH₂), 4.53 (d, 1H, ²J_{HH} = 14.1 Hz, imidazole–CH₂), 4.31 (d, 1H, ²J_{HH} = 14.2 Hz, triazole–CH₂). Anal. Calcd for C₂₀H₁₇Cl₂N₅O₂ (M_r = 430.29): C, 55.83; H, 3.98; N, 16.28. Found: C, 55.78; H, 3.90; N, 16.11.

Data for V3: yield 51.3%; white solid, mp 100–103 °C; ¹H NMR (CDCl₃, 500 MHz) δ 8.08 (s, 1H, triazole–H), 7.98 (s, 1H, triazole–H), 6.87–7.47 (m, 7H, Ar–H), 5.23 (d, 1H, ²J_{HH} = 14.5 Hz, triazole–C<u>H</u>₂), 4.79 (d, 1H, ²J_{HH} = 14.5 Hz, triazole–C<u>H</u>₂), 4.52 (d, 1H, ²J_{HH} = 14.1 Hz, morpholine–C<u>H</u>₂), 4.38 (d, 1H, ²J_{HH} = 14.1 Hz, morpholine–C<u>H</u>₂), 3.49–4.26 (m, 8H, morpholine–H). Anal. Calcd for C₂₁H₂₂Cl₂N₄O₃ (M_r = 449.33): C, 56.13; H, 4.94; N, 12.47. Found: C, 56.01; H, 4.52; N, 12.41.

Data for V4: yield 61.6%; canary yellow solid, mp 112–115 °C; ¹H NMR (CDCl₃, 500 MHz) δ 8.55 (s, 1H, triazole–H), 8.01 (s, 1H, triazole–H), 6.64–7.85 (m, 11H, Ar–H, aziminobenzene), 5.52 (d, 1H, ²J_{HH} = 14 Hz, triazole–CH₂), 5.36 (d, 1H, aziminobenzene–H, ²J_{HH} = 14.5 Hz), 5.34 (d, 1H, ²J_{HH} = 14.5 Hz, aziminobenzene–H), 4.53 (d, 1H, ²J_{HH} = 14 Hz, triazole–CH₂). Anal. Calcd for C₂₃H₁₈Cl₂N₆O₂ (M_r = 481.33): C, 57.39; H, 3.77; N, 17.46. Found: C, 57.33; H, 3.67; N, 17.55.

Data for V5: yield 43.5%; white solid, mp 138–140 °C; ¹H NMR (CDCl₃, 500 MHz) δ 8.47 (s, 1H, triazole–H), 8.01 (s, 1H, triazole–H), 6.78–7.64 (m, 7H, Ar–H), 5.29 (d, 1H, ²J_{HH} = 14 Hz, triazole–CH₂), 4.88 (d, 1H, ²J_{HH} = 14 Hz, triazole–CH₂), 4.23 (s, 1H, OH), 4.36 (d, 1H, ²J_{HH} = 12 Hz, HO–CH₂), 3.90 (d, 1H, ²J_{HH} = 14 Hz, HO–CH₂). Anal. Calcd for C₁₇H₁₅Cl₂N₃O₃ (M_r = 380.23): C, 53.70; H, 3.98; N, 11.05. Found: C, 54.01; H, 3.89; N, 11.12.

Data for V6: yield 86.2%; white solid, mp 119–120 °C; ¹H NMR (CDCl₃, 500 MHz) δ 8.18 (s, 1H, triazole–H), 8.01 (s, 1H, triazole–H), 6.78–7.64 (m, 7H, Ar–H), 4.74 (d, 1H, ²J_{HH} = 14 Hz, triazole–C<u>H</u>₂),

Scheme 1. Compounds V1-V17^a

^a Compounds V1–V13: R¹ = Cl. R² = triazole; imidazole; morpholine; benzotriazole; OH; N(CH₃)₂; NCH₂CH₃; NCH₃; OCH₃; NH-cyclo-C₆H₁₁; SCH₃; NCH₂CH₂OH; NCH₂OH. Compounds V14–V17: R¹ = F. R² = OCH₃; NCH₃; imidazole; triazole.

Scheme 2. Compounds V18 and V19^a

 ${}^{a}R^{1} = CI; F.$

Scheme 3. Compounds V20–V27^a

^a R¹ = Cl. R³ = H; 4-Cl; 2,4-Cl₂; 2,6-Cl₂; 4-CH₃; 4-CH₃O; 3,4-Cl₂; 2-F.

4.71 (d, 1H, ${}^{2}J_{HH} = 14$ Hz, triazole–CH₂), 3.41 (d, 1H, ${}^{2}J_{HH} = 13.5$ Hz, CH₂N(CH₃)₂), 2.70 (d, 1H, ${}^{2}J_{HH} = 13.5$ Hz, CH₂N(CH₃)₂), 2.13 (s, 6H, N (CH₃)₂). Anal. Calcd for C₁₉H₂₀Cl₂N₄O₂ ($M_{r} = 407.29$): C, 56.03; H, 4.95; N, 13.76. Found: C, 55.94; H, 4.90; N, 13.69.

Data for V7: yield 80.0%; white solid, mp 109–110 °C; ¹H NMR (CDCl₃, 500 MHz) δ 8.15 (s, 1H, triazole–H), 7.84 (s, 1H, triazole–H), 6.82–7.74 (m, 7H, Ar–H), 4.84 (d, 1H, ²J_{HH} = 14 Hz, triazole–CH₂), 4.74 (d, 1H, ²J_{HH} = 14 Hz, triazole–CH₂), 3.48 (d, 1H, ²J_{HH} = 12.5 Hz, CH₂NHC₂H₅), 2.97 (d, 1H, ²J_{HH} = 12.5 Hz, CH₂NHC₂H₅), 2.97 (d, 1H, ²J_{HH} = 12.5 Hz, CH₂NHC₂H₅), 2.54 (q, 2H, ³J_{HH} = 7 Hz, NHCH₂CH₃), 1.00 (t, 3H, ³J_{HH} = 7 Hz, NHCH₂CH₃), 1.62 (s, 1H, CH₂NHC₂H₅). Anal. Calcd for C₁₉H₂₀Cl₂N₄O₂ ($M_r = 407.29$): C, 56.03; H, 4.95; N, 13.76. Found: C, 56.13; H, 4.89; N, 13.72.

Data for **V8**: yield 85.3%; white solid, mp 110–112 °C; ¹H NMR (CDCl₃, 500 MHz) δ 8.47 (s, 1H, triazole–H), 8.01 (s, 1H, triazole–H), 6.78–7.64 (m, 7H, Ar–H), 5.25 (d, 1H, ²J_{HH} = 14.1 Hz, triazole–CH₂), 4.81 (d, 1H, ²J_{HH} = 14.1 Hz, triazole–CH₂), 3.85 (d, 1H, ²J_{HH} = 10 Hz, CH₂NHCH₃), 3.73 (d, 1H, ²J_{HH} = 10 Hz, CH₂NHCH₃), 3.73 (d, 1H, ²J_{HH} = 10 Hz, CH₂NHCH₃), 3.12 (s, 3H, NH–CH₃), 2.26 (s, 1H, NH–CH₃). Anal. Calcd for C₁₈H₁₈Cl₂N₄O₂ (M_r = 393.27): C, 54.97; H, 4.61; N, 14.25. Found: C, 54.89; H, 4.69; N, 14.18.

Data for **V9**: yield 83.4%; white solid, mp 149–150 °C; ¹H NMR (CDCl₃, 500 MHz) δ 8.15 (s, 1H, triazole–H), 7.80 (s, 1H, triazole–H), 6.74–7.60 (m, 7H, Ar–H), 5.05 (d, 1H, ²J_{HH} = 14.5 Hz, triazole–CH₂), 4.74 (d, 1H, ²J_{HH} = 14.5 Hz, triazole–CH₂), 3.92 (d, 1H, ²J_{HH} = 9.5 Hz,

CH₂OCH₃), 3.80 (d, 1H, ${}^{2}J_{HH} = 9.5$ Hz, CH₂OCH₃), 3.35 (s, 3H, O–CH₃). Anal. Calcd for C₁₈H₁₇Cl₂N₃O₃ ($M_{r} = 394.25$): C, 54.84; H, 4.35; \overline{N} , 10.66. Found: C, 54.88; H, 4.29; N, 10.72.

Data for **V10**: yield 82.7%; white solid, mp 106–107 °C; ¹H NMR (CDCl₃, 500 MHz) δ 8.16 (s, 1H, triazole–H), 7.85 (s, 1H, triazole–H), 6.82–7.45 (m, 7H, Ar–H), 4.85 (d, 1H, ²J_{HH} = 14 Hz, triazole–C<u>H</u>₂), 4.67 (d, 1H, ²J_{HH} = 14 Hz, triazole–C<u>H</u>₂), 3.43 (d, 1H, ²J_{HH} = 12.5 Hz, C<u>H</u>₂NH), 3.04 (d, 1H, ²J_{HH} = 12.5 Hz, C<u>H</u>₂NH), 0.91–2.21 (m, 11H, CH₂NHC₆H₁₁). Anal. Calcd for C₂₂H₂₄Cl₂N₄O₂ (M_r = 447.36): C, 59.87; H, 5.68; N, 12.14. Found: C, 59.78; H, 5.72; N, 12.20.

Data for V11: yield 90.5%; yellowish solid, mp 143–144 °C; ¹H NMR (CDCl₃, 500 MHz) δ 8.05 (s, 1H, triazole–H), 7.84 (s, 1H, triazole–H), 6.81–7.67 (m, 7H, Ar–H), 5.07 (d, 1H, ²J_{HH} = 14 Hz, triazole–CH₂), 4.81 (d, 1H, ²J_{HH} = 14 Hz, triazole–CH₂), 3.65 (d, 1H, ²J_{HH} = 14 Hz, CH₂SCH₃), 2.97 (d, 1H, ²J_{HH} = 14 Hz, CH₂SCH₃), 1.96 (s, 3H, S–CH₃). Anal. Calcd for C₁₈H₁₇Cl₂N₃O₂S (M_r = 410.32): C, 52.69; H, 4.18; N, 10.24. Found: C, 52.64; H, 4.11; N, 10.32.

Data for **V12**: yield 91.6%; white solid, mp 100–101 °C; ¹H NMR (CDCl₃, 500 MHz) δ 8.10 (s, 1H, triazole–H), 7.84 (s, 1H, triazole–H), 6.80–7.71 (m, 7H, Ar–H), 5.29 (s, 1H, NH), 4.86 (d, 1H, ²J_{HH} = 14 Hz, triazole–CH₂), 4.82 (d, 1H, ²J_{HH} = 14 Hz, triazole–CH₂), 3.60 (t, 2H, ³J_{HH} = 5 Hz, CH₂CH₂OH), 3.50 (d, 1H, ²J_{HH} = 12.5 Hz, CH₂NHCH₂CH₂), 3.01 (d, 1H, ²J_{HH} = 12.5 Hz, CH₂NHCH₂CH₂),

Table 1. Compounds V1-V27

Comp	R^1	R^2	R^3	Comp	R^1	\mathbb{R}^2	R ³
V 1	CI			V15	F	-NHCH ₃	
V2	Cl			V16	F		
V3	Cl			V17	F		
V4	CI	N, N		V18	CI		
V5	Cl	 OH		V19	F		
V6	Cl	-N(CH ₃) ₂		V20	Cl		Н
V7	Cl	-NHCH ₂ CH ₃		V21	Cl		4-Cl
V8	Cl	-NHCH ₃		V22	C1		2,4-Cl ₂
V9	Cl	-OCH ₃		V23	Cl		2,6-Cl ₂
V10	Cl	HN-		V24	Cl		4-CH ₃
V1 1	Cl	-SCH ₃		V25	CI		4-OCH ₃
V12	Cl	-NIICII2CII2OII		V26	Cl		3,4-Cl ₂
V13	Cl	-NHOCH ₃		V27	Cl		2-F
V14	F	$-OCH_3$					

Table 2. Yields and Melting Points of Intermediates **II-3** and **IV-3**^a

compd	R^3	yield (%)	mp (°C)	compd	R^3	yield (%)	mp (°C)
II-3a	Н	90.0	68-69	IV-3a	Н	94.1	54-55
ll-3b	4-Cl	81.2	117-118	IV-3b	4-Cl	70.5	118-119
ll-3c	2,4-Cl ₂	88.5	124-125	IV-3c	2,4-Cl ₂	79.4	77-79
ll-3d	2,6-Cl ₂	92.7	79-80	IV-3d	2,6-Cl ₂	86.0	47-48
ll-3e	4-CH ₃	73.6	86-87	IV-3e	4-CH ₃	73.3	84-86
II-3f	4-CH ₃ O	96.0	91-93	IV-3f	4-CH ₃ O	82.1	78-81
ll-3 g	3,4-Cl ₂	91.2	107-111	IV-3 g	3,4-Cl ₂	65.4	62-63
ll-3 h	2-F	58.6	103-104	IV-3 h	2-F	52.8	81-82

^a Intermediates II-3 and IV-3: R¹ = CI.

2.68 (t, 2H, ${}^{3}J_{HH} = 5$ Hz, NHCH₂CH₂OH), 2.02 (s, 1H, NHCH₂-CH₂OH). Anal. Calcd for C₁₉H₂₀Cl₂N₄O₃ ($M_{\rm r} = 423.29$): C, 53.91; H, 4.76; N, 13.24. Found: C, 54.02; H, 4.70; N, 13.34.

Data for V13: yield 60.5%; white solid, mp 124–125 °C; ¹H NMR (CDCl₃, 500 MHz) δ 8.01 (s, 1H, triazole–H), 7.71 (s, 1H, triazole–H), 6.17–7.61 (m, 7H, Ar–H), 5.59 (s, 1H, NH), 4.86 (d, 1H, ²J_{HH} = 14.5 Hz, triazole–C<u>H</u>₂), 4.72 (d, 1H, ²J_{HH} = 14.5 Hz, triazole–C<u>H</u>₂), 3.62 (d, 1H, ²J_{HH} = 14.5 Hz, C<u>H</u>₂NHCH₂OH), 3.38 (d, 1H, ²J_{HH} = 14.5 Hz, C<u>H</u>₂NHCH₂OH), 3.30 (s, 3H, NHOC<u>H</u>₃). Anal. Calcd for C₁₈H₁₈Cl₂N₄O₃ (M_r = 409.27): C, 52.82; H, 4.43; N, 13.69. Found: C, 52.04; H, 4.39; N, 13.60.

Data for V14: yield 61%; white solid, mp 88–89 °C; ¹H NMR (CDCl₃, 500 MHz) δ 8.10 (s, 1H, triazole–H), 7.82 (s, 1H, triazole–H), 6.65–7.61 (m, 7H, Ar–H), 5.12 (d, 1H, ²J_{HH} = 14 Hz, triazole–C<u>H</u>₂), 4.93 (d, 1H, ²J_{HH} = 14 Hz, triazole–C<u>H</u>₂), 4.93 (d, 1H, ²J_{HH} = 14 Hz, triazole–C<u>H</u>₂), 4.10 (s, 1H, OH), 3.92 (d, 1H, ²J_{HH} = 9.5

Hz, CH₂OCH₃), 3.81 (d, 1H, ${}^{2}J_{HH} = 9.5$ Hz, CH₂OCH₃), 3.45 (s, 3H, OCH₃). Anal. Calcd for C₁₈H₁₇ClFN₃O₃ ($M_r = 377.8$): C, 57.22; H, 4.54; N, 11.12. Found: C, 57.13; H, 4.49; N, 11.24.

Data for V15: yield 65%; yellowish solid, mp 143–145 °C; ¹H NMR (CDCl₃, 500 MHz) δ 8.17 (s, 1H, triazole–H), 8.00 (s, 1H, triazole–H), 6.67–7.55 (m, 7H, Ar–H), 5.25 (d, 1H, ²J_{HH} = 13.5 Hz, triazole–CH₂), 4.71 (d, 1H, ²J_{HH} = 13.5 Hz, triazole–CH₂), 3.63 (s, 1H, OH), 3.55 (d, 1H, ²J_{HH} = 10 Hz, CH₂NHCH₃), 3.27 (d, 1H, ²J_{HH} = 10 Hz, CH₂NHCH₃), 3.10 (m, 1H, NH), 2.25 (s, 3H, CH₂NHCH₃). Anal. Calcd for C₁₈H₁₈ClFN₄O₂ (M_r = 376.81): C, 57.37; H, 4.81; N, 14.87. Found: C, 57.23; H, 4.71; N, 14.70.

Data for V16: yield 75%; white solid, mp 167–168 °C; ¹H NMR (CDCl₃, 500 MHz) δ 7.93 (s, 1H, triazole–H), 7.81 (s, 1H, triazole–H), 6.63–7.52 (m, 10H, Ar–H, imidazole–H), 5.35 (d, 1H, ²J_{HH} = 14 Hz, triazole–CH₂), 4.63 (d, 1H, ²J_{HH} = 14.2 Hz, imidazole–CH₂), 4.63 (d, 1H, ²J_{HH} = 14.2 Hz, imidazole–CH₂), 4.49 (d, 1H, ²J_{HH} = 14.2 Hz, imidazole–CH₂), 4.29 (d, 1H, ²J_{HH} = 14 Hz, triazole–CH₂), 2.03 (s, 1H, OH). Anal. Calcd for C₂₀H₁₇ClFN₅O₂ (M_r = 413.83): C, 58.05; H, 4.14; N, 16.92. Found: C, 58.25; H, 4.10; N, 16.77.

Data for V17: yield 43%; white solid, mp 215–217 °C; ¹H NMR (CDCl₃, 500 MHz) δ 8.12 (s, 2H, triazole–H), 7.91 (s, 2H, triazole–H), 6.68–7.54 (d, 7H, Ar–H), 5.34 (d, 2H, ²J_{HH} = 14.5 Hz, triazole–CH₂), 4.60 (d, 2H, ²J_{HH} = 14.5 Hz, triazole–CH₂), 1.94 (s, 1H, OH). Anal. Calcd for C₁₉H₁₆ClFN₆O₂ (M_r = 414.82): C, 55.01; H, 3.89; N, 20.26. Found: C, 55.31; H, 3.82; N, 20.33.

Data for **V18**: yield 87.5%; white solid, mp 133–136 °C; ¹H NMR (CDCl₃, 500 MHz) δ 7.97 (s, 1H, triazole–H), 7.87 (s, 1H, triazole–H), 7.66–6.77 (m, 7H, Ar–H), 5.26 (d, 1H, ²J_{HH} = 14.1 Hz, triazole–CH₂), 4.65 (d, 1H, ²J_{HH} = 14.1 Hz, triazole–CH₂), 4.74 (s, 1H, O–H), $\overline{1.73}$

Table 3. ¹H NMR Data of Intermediates II-3 and IV-3

compd	δ (500 MHz, DMSO- d_6)
II-3a II-3b II-3c II-3d II-3e II-3f	7.76 (d, 1H, ${}^{3}J_{HH} = 3.5$ Hz, Ar—CH=CH), 7.66 (d, 1H, ${}^{3}J_{HH} = 3.5$ Hz, Ar—CH=CH), 7.05–7.52 (m, 12H, Ar—H) 7.82 (d, 1H, ${}^{3}J_{HH} = 3.5$ Hz, Ar—CH=CH), 7.67 (d, 1H, ${}^{3}J_{HH} = 3.5$ Hz, Ar—CH=CH), 7.06–7.53 (m, 11H, Ar—H) 8.16 (d, 1H, ${}^{3}J_{HH} = 3.0$ Hz, Ar—CH=CH), 8.14 (d, 1H, ${}^{3}J_{HH} = 3.0$ Hz, Ar—CH=CH), 7.13–7.82 (m, 10H, Ar—H) 7.70 (d, 1H, ${}^{3}J_{HH} = 4.0$ Hz, Ar—CH=CH), 7.57 (d, 1H, ${}^{3}J_{HH} = 4.0$ Hz, Ar—CH=CH), 7.07–7.54 (m, 10H, Ar—H) 7.67 (d, 1H, ${}^{3}J_{HH} = 8.0$ Hz, Ar—CH=CH), 7.64 (d, 1H, ${}^{3}J_{HH} = 8.0$ Hz, Ar—CH=CH), 7.05–7.52 (m, 11H, Ar—H), 2.33 (s, 3H, CH ₃) 7.71 (d, 1H, ${}^{3}J_{HH} = 8.0$ Hz, Ar—CH=CH), 7.65 (d, 1H, ${}^{3}J_{HH} = 8.0$ Hz, Ar—CH=CH), 7.03–7.55 (m, 11H, Ar—H), 3.63 (s, 3H, CH ₃)
ll-3g	7.88(d, 1H, ${}^{3}J_{HH} = 3.5$ Hz, Ar—CH—CH), 7.69 (d, 1H, ${}^{3}J_{HH} = 3.5$ Hz, Ar—CH—CH), 7.05–7.54 (m, 11H, Ar—H)
IV-3a	7.37 (d, H, $3_{HH} = 4.0$ Hz, Al C_{H-} CH, 7.94 (d, H, $3_{HH} = 4$ Hz, Al C_{H-} CH, $7.00 - 7.74$ (iii, HH, Al H) $7.01 - 7.49$ (m, 12H, Ar—H), 6.24 (d, 1H, $3_{J_{HH}} = 16$ Hz, Ar—CH—CH), 6.16 (d, 1H, $3_{J_{HH}} = 16$ Hz, Ar—CH—CH), 3.34 (d, 1H, $^2J_{HH} = 5$ Hz, O—CH ₂), 3.13 (d, 1H, $^2J_{HH} = 5$ Hz, O—CH ₂), 3.14 (d, 1H, $^2J_{HH} = 5$ Hz, O—CH ₂), 3.15 (d, 1H, $^2J_{HH} = 5$ Hz, O—CH ₂), 3.15 (d, 1H, $^2J_{HH} = 5$ Hz, O—CH ₂), 3.15 (d, 1H, $^2J_{HH} = 5$ Hz, O—CH ₂), 3.15 (d, 1H, $^2J_{HH} = 5$ Hz, O—CH ₂), 3.15 (d, 1H, $^2J_{HH} = 5$ Hz, O=CH ₂), 3.15 (d, 1H, $^2J_{HH} = 5$ Hz,
IV-3b	$7.03-7.51$ (m, 11H, Ar—H), 6.34 (d, 1H, $^{3}J_{HH} = 16.5$ Hz, Ar—CH=CH), 6.22 (d, 1H, $^{3}J_{HH} = 16.5$ Hz, Ar—CH=CH), 3.33 (d, 1H, $^{2}J_{HH} = 5$ Hz, O—CH ₂), 3.11 (d, 1H, 1), 6.24 (d, 1H, 2) (d, 1H, 2) (d, 2)
	² J _{HH} = 5 Hz, O—CH ₂)
IV-3c	$7.03 - 7.57$ (m, 10H, Ar—H), 6.32 (d, 1H, $^{3}J_{HH} = 16$ Hz, Ar—CH=CH), 6.27 (d, 1H, $^{3}J_{HH} = 16$ Hz, Ar—CH=CH), 3.35 (d, 1H, $^{2}J_{HH} = 5$ Hz, O—CH ₂), 3.15 (d, 1H, $^{2}J_{HH} = 5$ Hz, O—CH ₂), 3.15 (d, 1H, $^{2}J_{HH} = 16$ Hz, Ar—CH=CH)
IV-3d	$J_{HH} = 5 \text{ Hz}, 0 - 0 - 0 - 0 - 2 \text{ J}$ 7.04 - 7.55 (m, 10H, Ar—H), 6.21 (d, 1H, $^{3}J_{HH} = 16 \text{ Hz}, \text{ Ar}$ - CH=CH), 6.20 (d, 1H, $^{3}J_{HH} = 16 \text{ Hz}, \text{ Ar}$ - CH=CH), 3.35 (d, 1H, $^{2}J_{HH} = 5.5 \text{ Hz}, 0$ - CH ₂), 3.15(d, 1H, $^{2}J_{HH} = 5.5 \text{ Hz}, 0$ - CH ₂), 3.15(d, 1H, $^{2}J_{HH} = 5.5 \text{ Hz}, 0$ - CH ₂)
IV-3e	7.02–7.51 (m, 11H, Ar—H), 6.22 (d, 1H, ${}^{3}J_{HH} = 16$ Hz, Ar—CH—CH), 6.17 (d, 1H, ${}^{3}J_{HH} = 16$ Hz, Ar—CH—CH), 3.32 (d, 1H, ${}^{2}J_{HH} = 5$ Hz, O—CH ₂), 3.10 (d, 1H, ${}^{3}J_{HH} = 16$ Hz, Ar—CH—CH), 3.32 (d, 1H, ${}^{2}J_{HH} = 5$ Hz, O—CH ₂), 3.10 (d, 1H, ${}^{3}J_{HH} = 16$ Hz, Ar—CH—CH), 3.32 (d, 1H, ${}^{2}J_{HH} = 5$ Hz, O—CH ₂), 3.10 (d, 1H, ${}^{3}J_{HH} = 16$ Hz, Ar—CH—CH), 3.32 (d, 1H, ${}^{2}J_{HH} = 5$ Hz, O—CH ₂), 3.10 (d, 1H, ${}^{3}J_{HH} = 16$ Hz, Ar—CH—CH), 3.32 (d, 1H, ${}^{2}J_{HH} = 5$ Hz, O—CH ₂), 3.10 (d, 1H, ${}^{3}J_{HH} = 16$ Hz, Ar—CH
	² J _{HH} = 5 Hz, O—C <u>H</u> ₂), 2.25 (s, 3H, C <u>H</u> ₃)
IV-3f	$7.03 - 7.54$ (m, 11H, Ar—H), 6.26 (d, 1H, ${}^{3}J_{HH} = 16$ Hz, Ar—CH=CH), 6.19 (d, 1H, ${}^{3}J_{HH} = 16$ Hz, Ar—CH=CH), 3.75 (s, 3H, CH ₃), 3.35 (d, 1H, ${}^{2}J_{HH} = 5$ Hz, O—CH ₂),
IV-2 a	$3.13 (0, 1H, J_{HH} = 5 HZ, U^{-}UH_2)$ $7.02 - 7.69 (m, 10H Ar_{HH}) = 6.21 (d, 1H^3) = 1.6 Hz, Ar_{HC}U - CH (d, 2) (d, 1H^3) = 1.6 Hz, Ar_{HC}U - CH (d, 2) (d, 1H^2) = 5.42 (d, 2) (d, 2)$
1v-5 y	$7.05 - 7.06$ (iii, foir, Ai Ti), 6.57 (d, fri, $3_{HH} = 10$ frz, Ai Cin-Cin), 6.25 (d, fri, $3_{HH} = 10$ frz, Ai Cin-Cin), 5.55 (d, fri, $3_{HH} = 5$ frz, O Cinz) 5.16 (d, fri, 2
IV-3 h	$J_{HH} = 5 \text{ Hz}, O = CH_2$ $J_{HH} = 5 \text{ Hz}, O = CH_2$

(s, 3H, CH₃). Anal. Calcd for $C_{17}H_{15}Cl_2N_3O_2$ ($M_r = 364.23$): C, 56.06; H, 4.15; N, 11.54. Found: C, 56.21; H, 4.10; N, 11.66.

Data for V19: yield 85%; white solid, mp 125–127 °C; ¹H NMR (CDCl₃, 500 MHz) δ 7.97 (s, 1H, triazole–H), 7.86 (s, 1H, triazole–H), 6.75–7.63 (m, 7H, Ar–H), 5.28 (d, 1H, ²J_{HH} = 14 Hz, triazole–CH₂), 4.73 (s, 1H, O<u>H</u>), 4.52 (d, 1H, ²J_{HH} = 14.1 Hz, triazole–C<u>H₂</u>), 1.73 (s, 3H, C<u>H₃</u>). Anal. Calcd for C₁₇H₁₅ClFN₃O₂ (M_r = 347.77): C, 58.71; H, 4.35; N, 12.08. Found: C, 58.66; H, 4.45; N, 12.28.

Data for **V20**: yield 68.9%; yellow solid, mp 142–145 °C; ¹H NMR (CDCl₃, 500 MHz) δ 8.04 (s, 1H, triazole–H), 7.87 (s, 1H, triazole–H), 6.93–7.74 (m, 12H, Ar–H), 6.76–6.83 (q, 2H, CH=CH), 5.20 (d, 1H, ²J_{HH} = 14.5 Hz, triazole–CH₂), 4.76 (d, 1H, ²J_{HH} = 14.5 Hz, triazole–CH₂). Elemental Anal. Calcd for C₂₄H₁₉Cl₂N₃O₂: C, 63.73; H, 4.23; N, 9.29. Found: C, 63.72; H, 4.28; N, 9.26.

Data for **V21**: yield 81.5%; yellowish solid, mp 116–119 °C; ¹H NMR (CDCl₃, 500 MHz) δ 8.23 (s, 1H, triazole–H), 7.91 (s, 1H, triazole–H), 6.96–7.74 (m, 11H, Ar–H), 6.79–6.85 (q, 2H, CH=CH), 5.26 (d, 1H, ²J_{HH} = 14 Hz, triazole–CH₂), 4.77 (d, 1H, ²J_{HH} = 14 Hz, triazole–CH₂). Elemental Anal. Calcd for C₂₄H₁₈Cl₃N₃O₂: C, 59.22; H, 3.73; N, 8.63. Found: C, 59.28; H, 3.71; N, 8.67.

Data for **V22**: yield 75.4%; white solid, mp 128–130 °C; ¹H NMR (CDCl₃, 500 MHz) δ 8.18 (s, 1H, triazole–H), 7.91 (s, 1H, triazole–H), 6.99–7.77 (m, 10H, Ar–H), 6.79–6.85 (q, 2H, CH=CH), 5.24 (d, 1H, ²J_{HH} = 14.1 Hz, triazole–CH₂), 4.78 (d, 1H, ²J_{HH} = 14.1 Hz, triazole–CH₂), 4.78 (d, 1H, ²J_{HH} = 14.1 Hz, triazole–CH₂), 1.77 (s, 1H, OH). Elemental Anal. Calcd for C₂₄H₁₇Cl₄N₃O₂: C, 55.30; H, 3.29; N, 8.06. Found: C, 55.33; H, 3.35; N, 8.02.

Data for **V23**: yield 80.6%; yellowish solid, mp 128–130 °C; ¹H NMR (CDCl₃, 500 MHz) δ 8.38 (s, 1H, triazole–H), 7.98 (s, 1H, triazole–H), 6.93–7.81 (m, 10H, Ar–H), 6.82–6.87 (q, 2H, CH=CH), 5.24 (d, 1H, ²J_{HH} = 14 Hz, triazole–CH₂), 4.92 (d, 1H, ²J_{HH} = 14 Hz, triazole–CH₂). Elemental Anal. Calcd for C₂₄H₁₇Cl₄N₃O₂: C, 55.30; H, 3.29; N, 8.06. Found: C, 55.28; H, 3.31; N, 8.09.

Data for V24: yield 53%; yellow viscous fluid; ¹H NMR (CDCl₃, 500 MHz) δ 8.12 (s, 1H, triazole–H), 7.98 (s, 1H, triazole–H), 6.89–7.82 (m, 11H, Ar–H), 6.75–6.79 (q, 2H, CH=CH), 5.16 (d, 1H, ²J_{HH} = 14.5 Hz, triazole–CH₂), 4.78 (d, 1H, ²J_{HH} = 14.5 Hz, triazole–CH₂), 2.81 (s, 3H, CH₃). Elemental Anal. Calcd for C₂₅H₂₁Cl₂N₃O₂: C, 64.39; H, 4.54; N, 9.01. Found: C, 64.38; H, 4.58; N, 8.87.

Data for **V25**: yield 61.8%; yellow solid, mp 121–124 °C; ¹H NMR (CDCl₃, 500 MHz) δ 8.31 (s, 1H, triazole–H), 7.92 (s, 1H, triazole–H), 6.82–7.73 (m, 11H, Ar–H), 6.66–6.74 (q, 2H, CH=CH), 5.26 (d, 1H, ²J_{HH} = 14 Hz, triazole–CH₂), 4.78 (d, 1H, ²J_{HH} = 14 Hz, triazole–CH₂),

3.85 (s, 3H, $O-CH_3$). Elemental Anal. Calcd for $C_{25}H_{21}Cl_2N_3O_3$: C, 62.25; H, 4.39; N, 8.71. Found: C, 62.21; H, 4.42; N, 8.75.

Data for V26: yield 52.2%; yellowish solid, mp 117–120 °C; ¹H NMR (CDCl₃, 500 MHz) δ 8.29 (s, 1H, triazole–H), 7.89 (s, 1H, triazole–H), 6.78–7.69 (m, 10H, Ar–H), 6.67–6.69 (q, 2H, CH=CH), 5.27 (d, 1H, ²J_{HH} = 14 Hz, triazole–CH₂), 4.77 (d, 1H, ²J_{HH} = 14 Hz, triazole–CH₂), 2.77 (d, 1H, ²J_{HH} = 14 Hz, triazole–CH₂), 8.06. Elemental Anal. Calcd for C₂₄H₁₇Cl₄N₃O₂: C, 55.30; H, 3.29; N, 8.06. Found: C, 55.31; H, 3.28; N, 8.11.

Data for V27: yield 50.3%; white solid, mp 105–107 °C; ¹H NMR (CDCl₃, 500 MHz) δ 8.10 (s, 1H, triazole–H), 7.91 (s, 1H, triazole–H), 6.96–7.76 (m, 11H, Ar–H), 6.83–6.85 (q, 2H, CH=CH), 5.27 (d, 1H, ²J_{HH} = 14 Hz, triazole–CH₂), 4.77 (d, 1H, ²J_{HH} = 14 Hz, triazole–CH₂), 2.77 (d, 1H, ²J_{HH} = 14 Hz, triazole–CH₂). Elemental Anal. Calcd for C₂₄H₁₈Cl₂FN₃O₂: C, 61.29; H, 3.86; N, 8.93. Found: C, 61.27; H, 3.88; N, 8.96.

Bioassays. For comparison, the antifungal activities of the title compounds (V1–V27) and the commercial fungicides (tebuconazole, difenoconazole) were evaluated according to a procedure described in our previous work (14, 15). A mixture of the same amount of water, *N*-dimethylformamide, and Tween 20 was used as a negative control. The inhibition rates (%) of V1–V27 are summarized in Table 4.

RESULTS AND DISCUSSION

Preparations. The target compounds V1-V27 were synthesized from 1-(4-(4-halogenated phenoxy)-2-chlorophenyl)ethanone (I) as shown in Schemes 1-3. The substituted acetophenones (I) were reacted with bromine in anhydrous diethyl ether to give intermediate II-1 according to a reported procedure (16), and subsequent reaction with 1H-1,2,4-triazole vielded compounds III-1; further epoxidation reaction using trimethylsulfoxonium iodide provided epoxide IV-1 (Scheme 1). Intermediates IV-2 were prepared by epoxidized compound I with trimethylsulfonium methylsulfate as shown in Scheme 2. To obtain intermediate IV-3, we synthesized II-3 according to method given in ref (18) and then epoxidized II-3 using trimethylsulfonium methylsulfate (Scheme 3). The epoxide IV, in basecatalyzed ring-opening, was attacked by the 1H-1,2,4-triazole and other ring cleavages at the less sustituted carbon atom to afford target compounds V1-27. Intermediates IV-2 and IV-3 can be epoxidized I and II-3 by trimethylsulfoxonium iodide or

Table 4. Fungicidal Activities of Compounds V1-V27

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				fungic	idal activities (inhibition %)			
compd (r.g/mL) zeae solari arachidizoa pircola oxysporur V1 ^a 50 100 99.0 100 100 99.0 V1 ^a 50 100 84.2 100 91.0 80.9 V2 50 71.4 99.0 100.0 99.0 95.0 V3 50 78.3 55.2 60.0 65.2 34.4 V4 50 45.4 53.3 62.7 55.6 48.7 V5 50 99.0 99.0 100.0 99.0 77.1 V6 50 96.9 99.1 97.2 100 100 V7 50 56.8 63.8 61.4 75.4 86.9 V8 50 98 99 99.1 100 100 100 1 63.2 98.7 78.6 99.2 89.9 V10 50 47.5 87.3 75.2 100 78.9 <		concn	G	Δ	C	P	F	
V1* 50 100 99.0 100 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 90.0 77.1 90.0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	compd	(µg/mL)	zeae	solani	arachidicoa	pircola	oxysporum	
Image: Second	V1 ^a	50	100	99.0	100	100	99.0	
1 82.6 58.6 88.1 90.3 62.5 V2 50 71.4 99.0 100.0 99.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 77.1 V6 50 96.9 99.1 97.2 100.0 27.7 0 V7 50 56.8 63.8 61.4 75.4 86.9 V8 50 98.9 99.9 99.1 100.0 100.0 V9 50 98.7 100 99.1 $100.78.9$ 89.9 V10 50 47.5 87.3 75.2 $100.78.9$ 78.9 V11 50 37.2 83.7 82.4 $100.78.9$ 78.9 V13 50 97.3 100.9 $100.100.100.100.100.100.100.100.100.100$		5	100	84.2	100	91.0	80.9	
V2 50 71.4 99.0 100.0 99.0 95.0 V3 50 78.3 55.2 60.0 65.2 34.4 V4 50 96.9 99.0 99.0 100.0 99.0 99.0 V5 50 99.0 99.0 97.2 100 100 V6 50 96.9 99.1 97.2 100 100 V7 50 56.8 63.8 61.4 75.4 86.9 V8 50 98.7 100 99.1 100 100 V9 50 98.7 100 99.1 100 100 V10 50 47.5 87.3 75.2 100 78.9 V11 50 37.2 83.7 82.4 100 78.9 V11 50 97.3 100 98.4 100 100 V13 50 97.2 96.9 76.2 89.5 82.7		1	82.6	58.6	88.1	90.3	62.5	
V2 50 71.4 99.0 100.0 99.0 95.0 V3 50 78.3 55.2 60.0 65.2 34.4 V5 50 99.0 99.0 100.0 99.0 77.1 V6 50 96.9 99.1 97.2 100 100.0 V7 50 56.8 63.8 61.4 75.4 86.9 V8 50 98.9 99 99 100 100 V9 50 98.7 100 99.1 100 78.6 V10 50 47.5 87.3 75.2 100 78.9 V11 50 37.2 83.7 82.4 100 76.9 V11 50 37.3 98.5 72.2 97.7 100 V13 50 97.3 100 98.4 100 100 V14 50 100 100 100 100 100 100 <t< td=""><td></td><td></td><td>02.0</td><td>00.0</td><td>00.1</td><td>00.0</td><td>02.0</td></t<>			02.0	00.0	00.1	00.0	02.0	
V3 50 78.3 55.2 60.0 65.2 34.4 V4 50 45.4 53.3 62.7 55.6 48.7 V5 50 99.0 99.0 100.0 99.0 77.1 V6 50 96.9 99.1 97.2 100 100.0 V7 50 56.8 63.8 61.4 75.4 86.9 V8 50 98 99 99 100 100 V9 50 98.7 100 99.1 100 100 V9 50 98.7 78.6 99.2 89.9 V10 50 47.5 87.3 75.2 100 78.9 V11 50 37.2 83.7 82.4 100 100 V13 50 97.3 100 98.4 100 100 V14 50 100 100 100 100 100 1 67.2	V2	50	71.4	99.0	100.0	99.0	95.0	
V4 50 45.4 53.3 62.7 55.6 48.7 V5 50 99.0 99.0 100.0 99.0 77.1 V6 50 96.9 99.1 97.2 100 100 V7 50 56.8 63.8 61.4 75.4 86.9 V8 50 98 99 99 100 100 V8 50 98.7 100 99.1 100 100 V9 50 98.7 100 99.1 100 100 V10 50 47.5 87.3 75.2 100 78.9 V11 50 37.2 83.7 82.4 100 100 V13 50 97.3 100 98.4 100 100 1 18.2 61.3 55.3 84.2 0 V14 50 100 100 100 100 1 67.2 86.7 <t< td=""><td>V3</td><td>50</td><td>78.3</td><td>55.2</td><td>60.0</td><td>65.2</td><td>34.4</td></t<>	V3	50	78.3	55.2	60.0	65.2	34.4	
V5 50 99.0 99.0 100.0 99.0 77.1 V6 50 96.9 99.1 97.2 100 100 100 V7 50 56.8 63.8 61.4 75.4 86.9 V8 50 98.9 99 99 100 100 V9 50 98.7 100 99.1 100 100 V9 50 98.7 100 99.1 100 100 V10 50 47.5 87.3 75.2 100 78.9 V11 50 37.2 83.7 82.4 100 78.9 V11 50 37.3 98.5 72.2 97.7 100 V13 50 97.3 100 98.4 100 100 1 18.2 61.3 55.3 84.2 0 V14 50 100 100 100 100 1 21.8	V4	50	45.4	53.3	62.7	55.6	48.7	
V6 50 96.9 99.1 97.2 100 100 V7 50 56.8 63.8 61.4 75.4 86.9 V8 50 98 99 99 100 100 V9 50 98.7 100 99.1 100 100 V9 50 98.7 100 99.1 100 78.9 V10 50 47.5 87.3 75.2 96.7 100 V11 50 37.2 83.7 82.4 100 78.9 V12 50 37.3 98.5 72.2 97.7 100 V13 50 97.3 100 84.4 100 100 V14 50 100 100 100 100 100 100 100 V14 50 100.0 100 100 100 87.9 77.1 V16 50 84.3 73.2 100.0 87.9	V5	50	99.0	99.0	100.0	99.0	77.1	
V6 50 90.9 99.1 97.2 100 100 1 4.2 18.6 0 27.7 0 V7 50 56.8 63.8 61.4 75.4 86.9 V8 50 98 99 99 100 100 1 72.5 50.3 57.2 96 0 V9 50 98.7 100 99.1 100 100 1 63.2 98.7 78.6 99.2 89.9 V10 50 47.5 87.3 75.2 100 78.9 V11 50 37.2 83.7 82.4 100 78.9 V12 50 37.3 98.5 72.2 97.7 100 V13 50 97.3 100 98.4 100 100 100 1 57.2 96.9 76.2 89.5 82.7 89.5 82.7 <tr< td=""><td>VC</td><td>50</td><td>00.0</td><td>00.1</td><td>07.0</td><td>100</td><td>100</td></tr<>	VC	50	00.0	00.1	07.0	100	100	
V7 50 56.8 63.8 61.4 75.4 86.9 V8 50 98 99 99 100 100 V9 50 98.7 100 99.1 100 100 V9 50 98.7 100 99.1 100 100 V10 50 37.2 83.7 78.6 99.2 89.9 V10 50 37.2 83.7 82.4 100 78.9 V12 50 37.3 98.5 72.2 97.7 100 V13 50 97.3 100 98.4 100 100 V14 50 100 100 100 100 100 100 V14 50 100 100 100 100 100 100 V16 50 84.3 73.2 100.0 87.9 57.1 V17 50 95 97.5 100 95.9 100 <td>VO</td> <td>50</td> <td>96.9</td> <td>99.1</td> <td>97.2</td> <td>100</td> <td>100</td>	VO	50	96.9	99.1	97.2	100	100	
V75056.863.861.475.486.9V850989950.357.29600V95098.710099.1100100V105047.587.375.210078.9V115037.283.782.410078.9V125037.398.572.297.7100V135097.310088.4100100V1450100100100100100V1550100100100100100V165084.373.210087.9V17509597.510095.9100V1850100.078.2100.087.957.1V17509597.510095.9100V1850100.078.2100.087.957.1V20 ^a 5064.381.210067.968.7V21 ^a 5050.360.792.479.351.8V22 ^a 5051.863.295.064.157.1V23 ^a 5050.360.792.479.351.8V23 ^a 5050.360.792.479.351.8V23 ^a 5053.664.7100.064.555.4V24 ^a 5051.863.295.059.360.2V24 ^a		I	4.2	18.6	0	27.7	0	
V8 50 98 99 100 100 100 V9 50 98.7 100 99.1 100 100 V9 50 98.7 100 99.1 100 100 V10 50 47.5 87.3 75.2 100 78.9 V11 50 37.2 83.7 82.4 100 77.9 V12 50 37.3 98.5 72.2 97.7 100 V13 50 97.3 100 98.4 100 100 V14 50 100 100 100 100 100 V14 50 100 100 100 100 100 100 V15 50 100 100 100 100 100 100 100 V16 50 84.3 73.2 100.0 87.9 57.1 V17 50 95 97.5 100 95.9 <th< td=""><td>V7</td><td>50</td><td>56.8</td><td>63.8</td><td>61.4</td><td>75.4</td><td>86.9</td></th<>	V7	50	56.8	63.8	61.4	75.4	86.9	
V8 50 98 99 99 100 100 V9 50 98.7 100 99.1 100 100 V10 50 47.5 87.3 75.2 100 78.9 V10 50 47.5 87.3 75.2 100 78.9 V11 50 37.2 83.7 82.4 100 78.9 V12 50 37.3 98.5 72.2 97.7 100 V13 50 97.3 100 98.4 100 100 V14 50 100 100 100 100 100 V14 50 100 100 100 100 100 V15 50 100 100 100 87.9 57.1 V16 50 84.3 73.2 100.0 87.9 57.1 V17 50 95 97.5 100.0 87.9 90.0 V18	•	00	00.0	00.0	01.4	70.4	00.0	
1 72.5 50.3 57.2 96 0 V9 50 98.7 100 99.1 100 100 1 63.2 98.7 78.6 99.2 89.9 V10 50 47.5 87.3 75.2 100 78.9 V11 50 37.2 83.7 82.4 100 78.9 V12 50 37.3 98.5 72.2 97.7 100 V13 50 97.3 100 98.4 100 100 V14 50 100 100 100 100 100 100 V14 50 100 100 100 100 100 100 1 67.2 86.7 72.1 74.6 68.7 V15 50 100 100 100 100 100 1 21.8 75.0 39.5 49.3 90.0 V17 50 95 <	V8	50	98	99	99	100	100	
V950 198.7 63.2100 98.799.1 78.6100 99.2100 89.9V10 V11 5050 37.247.5 83.787.3 82.475.2 100100 78.9 77.278.6 99.2V12 V1250 5037.3 37.398.5 98.572.2 72.297.7 97.7100V13 150 197.3 18.2100 61.398.4 55.3100 84.2100 0 100V16 V17 10 100 100 100 100 100 100 100 100 100 100 100100 100 100 100 100 100 100 100V16 100 100 100 100 100 100100 100 100 100 100 100100 100 100 100 100 100 100V17 10 100 100 100 100 100 100 100100 100 100 100 100 100 100 100 100V18 100 100 100 100 100 100 100<		1	72.5	50.3	57.2	96	0	
V9 50 98.7 100 99.1 100 100 1 63.2 98.7 78.6 99.2 89.9 V10 50 47.5 87.3 75.2 100 78.9 V11 50 37.2 83.7 82.4 100 78.9 V12 50 37.3 98.5 72.2 97.7 100 V13 50 97.3 100 98.4 100 100 V14 50 100 100 100 100 100 100 V15 50 100 100 100 100 100 100 1 67.2 86.7 72.1 74.6 68.7 V16 50 84.3 73.2 100.0 87.9 57.1 V17 50 95 97.5 100 90.9 90.0 85.3 V17 50 95 97.5 100.0 100.0 85.3								
1 63.2 98.7 78.6 99.2 89.9 V1050 47.5 87.3 75.2 100 78.9 V1150 37.2 83.7 82.4 100 78.9 V1250 37.3 98.5 72.2 97.7 100 V1350 97.3 100 98.4 100 100 1 18.2 61.3 55.3 84.2 0 V1450 100 100 100 100 100 1 57.2 96.9 76.2 89.5 82.7 V1550 100 100 100 100 100 1 67.2 86.7 72.1 74.6 68.7 V1650 84.3 73.2 100.0 87.9 57.1 V17 50 95 97.5 100 95.9 100 1 21.8 75.0 39.5 49.3 90.0 V1850 100.0 78.2 100.0 100.0 85.3 V19 50 98 100 99 100 99 100 20.0 37.5 48.7 17.9 V20 ^a 50 64.3 81.2 100.0 67.9 82.7 50 50.3 60.7 92.4 79.3 82.9 50.5 51.8 63.2 95.0 59.3 60.2 $V24^a$ 50 51.8 63.2 95.0 59.3 60.2 $V24^a$	V9	50	98.7	100	99.1	100	100	
V10 V11 V1250 5047.5 37.287.3 83.775.2 82.4100 100 78.9V12 V125037.3 37.398.572.297.7100V13 150 197.3 18.2100 61.398.4 55.3100 84.2100 0100 0V14 150 1100 57.2100 96.9100 76.2100 89.5100 82.7V15 V1550 1100 67.2100 86.7100 72.1100 74.6100 68.7V16 V17 150 2.1.895.9 7.5.100 39.587.9 49.357.1V17 10 150 2.1.895.9 75.0100 39.585.3V18 V20a 2.0100.0 37.577.2 48.7100.0 48.7V20a 2.0 2.050.64.3 50.381.2 60.7 2.4 50.3100.67.9 57.1 68.7 50.3 50.3 50.3V20a 2.2 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.4 2.4 2.4 3.3 3.3 3.3100 3.3 3.5 4.4 3.3 3.5 3.60.7 3.5.3V20a 2.3 2.4 2.4 2.4 3.3 3.560.7 3.5.3 3.60.7 3.5.3 3.60.7 3.5.3 3.60.7 3.5.3V20a 2.3 2.4 2.4 3.560.7 3.60.		1	63.2	98.7	78.6	99.2	89.9	
V10 50 47.5 87.3 75.2 100 78.9 V11 50 37.2 83.7 82.4 100 78.9 V12 50 37.3 98.5 72.2 97.7 100 V13 50 97.3 100 98.4 100 100 V14 50 100 100 100 100 100 100 V14 50 100 100 100 100 100 100 100 V15 50 100 100 100 100 100 100 100 100 V16 50 84.3 73.2 100.0 87.9 57.1 V17 50 95 97.5 100 95.9 100 1 21.8 75.0 39.5 49.3 90.0 V18 50 100.0 78.2 100.0 100.0 85.3 V19 50 98.100 99 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
V11 50 37.2 83.7 82.4 100 78.9 V12 50 37.3 98.5 72.2 97.7 100 V13 50 97.3 100 98.4 100 100 V13 50 97.3 100 98.4 100 100 V14 50 100 100 100 100 100 100 V14 50 100 100 100 100 100 100 V15 50 100 100 100 100 100 100 V16 50 84.3 73.2 100.0 87.9 57.1 V17 50 95 97.5 100 95.9 100 V18 50 100.0 78.2 100.0 100.0 85.3 V19 50 98 100 99 100 99 100	V10	50	47.5	87.3	75.2	100	78.9	
V12 50 37.3 98.5 72.2 97.7 100 V13 50 97.3 100 98.4 100 100 V14 50 100 100 100 100 100 100 V14 50 100 100 100 100 100 100 V14 50 100 100 100 100 100 100 V15 50 100 100 100 100 100 100 V16 50 84.3 73.2 100.0 87.9 57.1 V17 50 95 97.5 100 95.9 100 V18 50 100.0 78.2 100.0 100.0 85.3 V20 ^a 50 64.3 81.2 100.0 67.9 68.7 V21 ^a 50 77.2 76.8 95.0 64.1 <t< td=""><td>V11</td><td>50</td><td>37.2</td><td>83.7</td><td>82.4</td><td>100</td><td>78.9</td></t<>	V11	50	37.2	83.7	82.4	100	78.9	
V13 50 1 97.3 18.2 100 51.3 98.4 55.3 100 84.2 100 0V14 50 1 100 57.2 100 96.9 100 76.2 100 89.5 100 82.7 V15 50 1 100 67.2 100 86.7 100 72.1 100 74.6 100 68.7 V16 50 1 84.3 67.2 73.2 86.7 100.0 72.1 87.9 74.6 57.1 68.7 V16 50 1 84.3 21.8 73.2 75.0 100.0 39.5 87.9 49.3 90.0 V17 50 1 21.8 95.9 75.0 100.0 39.5 87.9 49.3 90.0 V18 50 1 0.0 78.2 20.0 100.0 37.5 48.7 48.7 17.9 V20a 100 50 77.2 72.7 $68.95.0$ 64.1 57.1 57.1 50 77.2 76.8 95.0 64.1 57.1 57.3 50	V12	50	37.3	98.5	72.2	97.7	100	
V13 50 97.3 100 98.4 100 100 1 18.2 61.3 55.3 84.2 0 V14 50 100 100 100 100 100 1 57.2 96.9 76.2 89.5 82.7 V15 50 100 100 100 100 100 1 67.2 86.7 72.1 74.6 68.7 V16 50 84.3 73.2 100.0 87.9 57.1 V17 50 95 97.5 100 95.9 100 1 21.8 75.0 39.5 49.3 90.0 V18 50 100.0 78.2 100.0 100.0 85.3 V19 50 98 100 99 100 99 10 20.0 37.5 48.7 17.9 V20 ^a 50 64.3 81.2 100.0 67.9 68.7	140	50	07.0	100	00.4	100	400	
118.261.355.384.20V1450100100100100100157.296.976.289.582.7V1550100100100100100167.286.772.174.668.7V165084.373.2100.087.957.1V17509597.510095.9100121.875.039.549.390.0V1850100.078.2100.0100.085.3V19509810099100991020.037.548.717.9V20 ^a 5064.381.210067.968.7V21 ^a 5077.276.895.064.157.1V22 ^a 5057.254.497.858.750.9V23 ^a 5050.360.792.479.351.8V24 ^a 5051.863.295.059.360.2V25 ^a 5061.455.091.364.555.4V26 ^a 5053.666.7100.064.657.1V27 ^a 5061.455.099.352.165.9difenoconazole5010099.210010099.9173.99556.769.753.1tebuconazole50100100100.0 <td>V13</td> <td>50</td> <td>97.3</td> <td>100</td> <td>98.4</td> <td>100</td> <td>100</td>	V13	50	97.3	100	98.4	100	100	
V14 50 1 100 57.2 100 96.9 100 76.2 100 89.5 100 82.7 V15 50 1 100 67.2 100 86.7 100 72.1 100 74.6 100 68.7 V16 50 1 84.3 21.8 73.2 75.0 100.0 39.5 87.9 49.3 57.1 V17 50 1 21.8 95 75.0 97.5 39.5 100 49.3 90.0 V18 50 1 0 100.0 78.2 100.0 100.0 100.0 85.3 V19 V20a 1 50 50 100 71.2 98 72.0 100 37.5 99 48.7 99 17.9 V20a V23a 20 50 50.3 50.3 50.3 50.3 60.7 50.3 $50.$		1	18.2	61.3	55.3	84.2	0	
V14 50 100 <td>V14</td> <td>50</td> <td>100</td> <td>100</td> <td>100</td> <td>100</td> <td>100</td>	V14	50	100	100	100	100	100	
V15 50 100 <td>V14</td> <td>50</td> <td>57.0</td> <td>06.0</td> <td>76.0</td> <td>100 00 E</td> <td>100</td>	V14	50	57.0	06.0	76.0	100 00 E	100	
V15 50 1 100 67.2 100 86.7 100 72.1 100 		1	57.2	90.9	70.2	09.0	02.1	
V10 50 100 100 100 100 100 100 1 67.2 86.7 72.1 74.6 68.7 V16 50 84.3 73.2 100.0 87.9 57.1 V17 50 95 97.5 100 95.9 100 1 21.8 75.0 39.5 49.3 90.0 V18 50 100.0 78.2 100.0 100.0 85.3 V19 50 98 100 99 100 99 1 0 20.0 37.5 48.7 17.9 V20 ^a 50 64.3 81.2 100 67.9 68.7 V21 ^a 50 64.3 81.2 100 67.9 68.7 V22 ^a 50 57.2 54.4 97.8 58.7 50.9 V23 ^a 50 50.3 60.7 92.4 79.3 51.8 V24 ^a 50 51.8 63.2 95.0 59.3 60.2 V25 ^a 50 61.4 55.0 91.3 64.5 55.4 V26 ^a 50 53.6 66.7 100.0 64.6 57.1 V27 ^a 50 61.4 55.0 99.3 52.1 65.9 difenoconazole 50 100 99.2 100 100 99.9 1 73.9 95 56.7 69.7 53.1 tebuconazole 50 100 100 100.0 100.0 <tr< td=""><td>V15</td><td>50</td><td>100</td><td>100</td><td>100</td><td>100</td><td>100</td></tr<>	V15	50	100	100	100	100	100	
V16 50 84.3 73.2 100.0 87.9 57.1 V17 50 95 97.5 100 95.9 100 1 21.8 75.0 39.5 49.3 90.0 V18 50 100.0 78.2 100.0 100.0 85.3 V19 50 98 100 99 100 99 1 0 20.0 37.5 48.7 17.9 V20 ^a 50 64.3 81.2 100 67.9 68.7 V21 ^a 50 77.2 76.8 95.0 64.1 57.1 V22 ^a 50 57.2 54.4 97.8 58.7 50.9 V23 ^a 50 51.8 63.2 95.0 59.3 60.2 V25 ^a 50 61.4 55.0 91.3 64.5 55.4 V26 ^a 50 53.6 66.7 100.0 64.6 57.1 V27 ^a	15	1	67.2	86.7	72 1	74.6	68.7	
V165084.373.2100.087.957.1V17509597.510095.9100121.875.039.549.390.0V1850100.078.2100.0100.085.3V19509810099100991020.037.548.717.9V20 ^a 5064.381.210067.968.7V21 ^a 5077.276.895.064.157.1V22 ^a 5037.254.497.858.750.9V23 ^a 5050.360.792.479.351.8V24 ^a 5051.863.295.059.360.2V25 ^a 5061.455.091.364.555.4V26 ^a 5053.666.7100.064.657.1V27 ^a 5061.455.099.352.165.9difenoconazole5010099.210010099.9173.99556.769.753.1tebuconazole50100100100.0100.068.2			07.2	00.7	72.1	74.0	00.7	
V17 50 95 97.5 100 95.9 100 V17 50 95 97.5 100 95.9 100 V18 50 100.0 78.2 100.0 100.0 85.3 V19 50 98 100 99 100 99 1 0 20.0 37.5 48.7 17.9 V20 ^a 50 64.3 81.2 100 67.9 68.7 V21 ^a 50 77.2 76.8 95.0 64.1 57.1 V22 ^a 50 37.2 54.4 97.8 58.7 50.9 V23 ^a 50 50.3 60.7 92.4 79.3 51.8 V24 ^a 50 51.8 63.2 95.0 59.3 60.2 V25 ^a 50 61.4 55.0 91.3 64.5 55.4 V26 ^a 50 53.6 66.7 100.0 64.6 57.1 <td< td=""><td>V16</td><td>50</td><td>84.3</td><td>73.2</td><td>100.0</td><td>87.9</td><td>57.1</td></td<>	V16	50	84.3	73.2	100.0	87.9	57.1	
V17509597.510095.9100121.875.039.549.390.0V1850100.078.2100.0100.085.3V19509810099100991020.037.548.717.9V20 ^a 5064.381.210067.968.7V21 ^a 5077.276.895.064.157.1V22 ^a 5037.254.497.858.750.9V23 ^a 5050.360.792.479.351.8V24 ^a 5051.863.295.059.360.2V25 ^a 5061.455.091.364.555.4V26 ^a 5053.666.7100.064.657.1V27 ^a 5061.455.099.352.165.9difenoconazole5010099.210010099.9173.99556.769.753.1tebuconazole50100100100.0100.0186.965.591.068.265.6		00	01.0	10.2	100.0	07.0	07.1	
1 21.8 75.0 39.5 49.3 90.0 V18 50 100.0 78.2 100.0 100.0 85.3 V19 50 98 100 99 100 99 1 0 20.0 37.5 48.7 17.9 V20 ^a 50 64.3 81.2 100 67.9 68.7 V21 ^a 50 77.2 76.8 95.0 64.1 57.1 V22 ^a 50 51.8 63.2 95.0 59.3 60.2 V23 ^a 50 51.8 63.2 95.0 59.3 60.2 V24 ^a 50 51.8 63.2 95.0 59.3 60.2 V25 ^a 50 61.4 55.0 91.3 64.5 55.4 V26 ^a 50 53.6 66.7 100.0 64.6 57.1 V27 ^a 50 61.4 55.0 91.3 52.1 65.9 difenocona	V17	50	95	97.5	100	95.9	100	
V1850100.078.2100.0100.085.3V19509810099100991020.037.548.717.9V20a5064.381.210067.968.7V21a5077.276.895.064.157.1V22a5037.254.497.858.750.9V23a5050.360.792.479.351.8V24a5051.863.295.059.360.2V25a5061.455.091.364.555.4V26a5053.666.7100.064.657.1V27a5061.455.099.352.165.9difenoconazole5010099.210010099.9173.99556.769.753.1tebuconazole50100100100.0100.0186.965.591.068.265.6		1	21.8	75.0	39.5	49.3	90.0	
V1850100.078.2100.0100.085.3V19509810099100991020.037.548.717.9V20a5064.381.210067.968.7V21a5077.276.895.064.157.1V22a5037.254.497.858.750.9V23a5050.360.792.479.351.8V24a5051.863.295.059.360.2V25a5061.455.091.364.555.4V26a5053.666.7100.064.657.1V27a5061.455.099.352.165.9difenoconazole5010099.210010099.9173.99556.769.753.1tebuconazole50100100100.0100.0186.965.591.068.265.6								
V19 50 98 100 99 100 99 10 20.0 37.5 48.7 17.9 V20 ^a 50 64.3 81.2 100 67.9 68.7 V21 ^a 50 77.2 76.8 95.0 64.1 57.1 V22 ^a 50 37.2 54.4 97.8 58.7 50.9 V23 ^a 50 50.3 60.7 92.4 79.3 51.8 V24 ^a 50 51.8 63.2 95.0 59.3 60.2 V25 ^a 50 61.4 55.0 91.3 64.5 55.4 V26 ^a 50 53.6 66.7 100.0 64.6 57.1 V27 ^a 50 61.4 55.0 99.3 52.1 65.9 difenoconazole 50 100 99.2 100 100 99.9 1 73.9 95 56.7 69.7 53.1 tebuconazole 50 100 100 100.0 100.0 1 86.9 65.5 91.0 68.2 65.6	V18	50	100.0	78.2	100.0	100.0	85.3	
V19509810099100991020.0 37.5 48.7 17.9 V20 ^a 5064.3 81.2 100 67.9 68.7 V21 ^a 50 77.2 76.8 95.0 64.1 57.1 V22 ^a 50 37.2 54.4 97.8 58.7 50.9 V23 ^a 50 50.3 60.7 92.4 79.3 51.8 V24 ^a 50 51.8 63.2 95.0 59.3 60.2 V25 ^a 50 61.4 55.0 91.3 64.5 55.4 V26 ^a 50 53.6 66.7 100.0 64.6 57.1 V27 ^a 50 61.4 55.0 99.3 52.1 65.9 difenoconazole 50 100 99.2 100 100 99.9 1 73.9 95 56.7 69.7 53.1 tebuconazole 50 100 100 100.0 100.0 1 86.9 65.5 91.0 68.2 65.6								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V19	50	98	100	99	100	99	
V20 a5064.381.210067.968.7V21 a5077.276.895.064.157.1V22 a5037.254.497.858.750.9V23 a5050.360.792.479.351.8V24 a5051.863.295.059.360.2V25 a5061.455.091.364.555.4V26 a5053.666.7100.064.657.1V27 a5061.455.099.352.165.9difenoconazole5010099.210010099.9173.99556.769.753.1tebuconazole50100100100.0100.0186.965.591.068.265.6		1	0	20.0	37.5	48.7	17.9	
$V20^a$ 50 64.3 81.2 100 67.9 68.7 $V21^a$ 50 77.2 76.8 95.0 64.1 57.1 $V22^a$ 50 37.2 54.4 97.8 58.7 50.9 $V23^a$ 50 50.3 60.7 92.4 79.3 51.8 $V24^a$ 50 51.8 63.2 95.0 59.3 60.2 $V25^a$ 50 61.4 55.0 91.3 64.5 55.4 $V26^a$ 50 53.6 66.7 100.0 64.6 57.1 $V27^a$ 50 61.4 55.0 99.3 52.1 65.9 difenoconazole 50 100 99.2 100 100 99.9 1 73.9 95 56.7 69.7 53.1 tebuconazole 50 100 100 100 100.0 100.0 100.0 1 86.9 65.5 91.0 68.2 65.6								
$V21^{a}$ 50 77.2 76.8 95.0 64.1 57.1 $V22^{a}$ 50 37.2 54.4 97.8 58.7 50.9 $V23^{a}$ 50 50.3 60.7 92.4 79.3 51.8 $V24^{a}$ 50 51.8 63.2 95.0 59.3 60.2 $V25^{a}$ 50 61.4 55.0 91.3 64.5 55.4 $V26^{a}$ 50 53.6 66.7 100.0 64.6 57.1 $V27^{a}$ 50 61.4 55.0 99.3 52.1 65.9 difenoconazole 50 100 99.2 100 100 99.9 1 73.9 95 56.7 69.7 53.1 tebuconazole 50 100 100 100.0 100.0 1 86.9 65.5 91.0 68.2 65.6	V20 ^a	50	64.3	81.2	100	67.9	68.7	
$V22^a$ 50 37.2 54.4 97.8 58.7 50.9 $V23^a$ 50 50.3 60.7 92.4 79.3 51.8 $V24^a$ 50 51.8 63.2 95.0 59.3 60.2 $V25^a$ 50 61.4 55.0 91.3 64.5 55.4 $V26^a$ 50 53.6 66.7 100.0 64.6 57.1 $V27^a$ 50 61.4 55.0 99.3 52.1 65.9 difenoconazole 50 100 99.2 100 100 99.9 1 73.9 95 56.7 69.7 53.1 tebuconazole 50 100 100 100.0 100.0 1 86.9 65.5 91.0 68.2 65.6	V21 ^a	50	77.2	76.8	95.0	64.1	57.1	
$V23^a$ 50 50.3 60.7 92.4 79.3 51.8 $V24^a$ 50 51.8 63.2 95.0 59.3 60.2 $V25^a$ 50 61.4 55.0 91.3 64.5 55.4 $V26^a$ 50 53.6 66.7 100.0 64.6 57.1 $V27^a$ 50 61.4 55.0 99.3 52.1 65.9 difenoconazole 50 100 99.2 100 100 99.9 1 73.9 95 56.7 69.7 53.1 tebuconazole 50 100 100 100.0 100.0 1 86.9 65.5 91.0 68.2 65.6	V22 ^a	50	37.2	54.4	97.8	58.7	50.9	
V24 ^a 50 51.8 63.2 95.0 59.3 60.2 V25 ^a 50 61.4 55.0 91.3 64.5 55.4 V26 ^a 50 53.6 66.7 100.0 64.6 57.1 V27 ^a 50 61.4 55.0 99.3 52.1 65.9 difenoconazole 50 100 99.2 100 100 99.9 1 73.9 95 56.7 69.7 53.1 tebuconazole 50 100 100 100.0 100.0 1 86.9 65.5 91.0 68.2 65.6	V23 ^a	50	50.3	60.7	92.4	79.3	51.8	
V25 ^a 50 61.4 55.0 91.3 64.5 55.4 V26 ^a 50 53.6 66.7 100.0 64.6 57.1 V27 ^a 50 61.4 55.0 99.3 52.1 65.9 difenoconazole 50 100 99.2 100 100 99.9 1 73.9 95 56.7 69.7 53.1 tebuconazole 50 100 100 100.0 100.0 1 86.9 65.5 91.0 68.2 65.6	V24 ^a	50	51.8	63.2	95.0	59.3	60.2	
V26 ^{at} 50 53.6 66.7 100.0 64.6 57.1 V27 ^{at} 50 61.4 55.0 99.3 52.1 65.9 difenoconazole 50 100 99.2 100 100 99.9 1 73.9 95 56.7 69.7 53.1 tebuconazole 50 100 100 100.0 100.0 1 86.9 65.5 91.0 68.2 65.6	V25 ^a	50	61.4	55.0	91.3	64.5	55.4	
V27 ^a 50 61.4 55.0 99.3 52.1 65.9 difenoconazole 50 100 99.2 100 100 99.9 1 73.9 95 56.7 69.7 53.1 tebuconazole 50 100 100 100.0 100.0 1 86.9 65.5 91.0 68.2 65.6	V26 ^{<i>a</i>}	50	53.6	66.7	100.0	64.6	57.1	
difenoconazole 50 100 99.2 100 100 99.9 1 73.9 95 56.7 69.7 53.1 tebuconazole 50 100 100 100 100.0 100.0 1 86.9 65.5 91.0 68.2 65.6	V27 ^a	50	61.4	55.0	99.3	52.1	65.9	
ditenoconazole 50 100 99.2 100 100 99.9 1 73.9 95 56.7 69.7 53.1 tebuconazole 50 100 100 100 100.0 100.0 1 86.9 65.5 91.0 68.2 65.6						1.8.5		
1 73.9 95 56.7 69.7 53.1 tebuconazole 50 100 100 100 100.0 100.0 1 86.9 65.5 91.0 68.2 65.6	ditenoconazole	50	100	99.2	100	100	99.9	
tebuconazole 50 100 100 100 100.0 100.0 1 86.9 65.5 91.0 68.2 65.6		1	73.9	95	56.7	69.7	53.1	
1 86.9 65.5 91.0 68.2 65.6	tobuornali	50	100	100	100	100.0	100.0	
1 80.9 65.5 91.0 68.2 65.6	tebuconazole	50	100	100	100	100.0	100.0	
		1	86.9	05.5	91.0	68.2	0.60	

 a These compounds and their antifungal activities had been reported in refs (14) and (15).

trimethylsulfonium methylsulfate. We preferred the latter agent for its cheapness and greater convenience.

The structures of all of the target compounds were characterized by ¹H NMR and elemental analyses. In the ¹H NMR spectra of compounds V the signals of the two protons of the CH_2 group connecting the triazoles appear as two doublets at around 5.2 and 4.7 ppm. It is believed that this is due to the fact they are attached to an asymmetrical carbon atom, which makes the magnetic environments of the two CH_2 group protons different.

Structure-Activity Relationship. The antifungal activities for compound V were tested, and the results are listed in Table 4.

The 1H-1,2,4-triazole compounds' mode of action is the arrest of sterol biosynthesis by inhibiting 14 α -demethylase (14 α -DM), a specific cytochrome P450. Evidence that sterol biosynthesis inhibition is linked to the binding of nucleophilic N₄ of 1,2, 4-triazole to iron in the ferric state of the heme is an essential feature of the inhibition action (19). The N₁ substituent, which generally bears one or more hydrophobic groups, binds to a region normally occupied by the natural sterol substrate. Structural limitations to binding have been analyzed with computer graphic approaches (19). As shown in Table 4, all title compounds had a high inhibition rate at $50 \,\mu g/mL$ concentration; V, with a small size of \mathbb{R}^2 , favorably inhibited the oxidative removal of sterol C(14) methyl groups by the cytochrome P450 enzyme, which increased the antifungal activity, especially when the substituents of R² were smaller alkylamino/alkoxy groups (such as methylamino, methoxy) or a triazole group (compounds V1, V8, V9, V14, V15, V17). It was also found that when the R^2 was modified by a substituted benzyl group, the target molecules V20-V27 showed excellent inhibitory activities to C. arachidicoa. When \mathbb{R}^2 was not changed, the antifungal acitvities for \mathbb{R}^1 (Cl, F) were in the same level as the similar hydrophobic parameter of Cl (0.71) and F (0.14) (20).

Compounds (V1, V6, V8, V9, V13–V15, V17, V19) with higher inhibition rates (>90% for all five fungi at 50 μ g/mL concentration) were further bioassayed at a concentration of 1 μ g/mL. The bioassay result showed that compounds V1, V9, and V15 possess higher antifungal activities comparable to those of commercial fungicides tebuconazole and difenoconazole.

In conclusion, by introducing the arylphenyl ether group in triazole alcohol compounds, a new type of fungicidal candidate was synthesized and explored. When the substituents R^2 were smaller alkylamino/alkoxy groups (such as methylamino, methoxy) or a triazole group, the new target compounds showed higher antifungal activities comparable to those of commercial fungicides tebuconazole and difenoconazole.

LITERATURE CITED

- Parsons, J. H.; West, P. J. Pesticidal 1,2,4-triazole compounds. U.S. Patent 4414221, 1981.
- (2) Ma, Y. M.; Liu, R. H.; Gong, X. Y.; Li, Z.; Huang, Q. C.; Wang, H. S.; Song, G. H. Synthesis and herbicidal activity of *N*,*N*-diethyl-3-(arylselenonyl)-1*H*-1,2,4-triazole-1-carboxamide. *J. Agric. Food Chem.* 2006, 54, 7724–7728.
- (3) Arnoldi, A.; Carzaniga, R.; Morini, G.; Merlini, L.; Farina, G. Synthesis, fungicidal activity, and QSAR of a series of 2-dichlorophenyl-3-triazolylpropyl ethers. *J. Agric. Food Chem.* 2000, 48, 2547–2555.
- (4) Mares, D.; Romagnoli, C.; Andreotti, E.; Manfrini, M.; Vicentini, C.
 B. Synthesis and antifungal action of new tricyclazole analogues. *J. Agric. Food Chem.* 2004, *52*, 2003–2009.
- (5) Arnoldi, A.; Dallavalle, S.; Merlini, L.; Musso, L.; Farina, G.; Moretti, M.; Jayasinghe, L. Synthesis and antifungal activity of a series of N-substituted [2-(2,4-dichlorophenyl)-3-(1,2,4-triazol-1-yl)] propylamines. *J. Agric. Food Chem.* 2007, 55, 8187–8192.
- (6) Worthington, P. A. Synthesis of 1,2,4-triazole compounds related to the fungicides flutriafol and hexaconazole. <u>*Pestic. Sci.*</u> 1991, 31, 457–498.
- (7) Reinhard, S. Bayer fungicides of the triazole group. Zesz. Probl. Postepow Nauk Roln. 1988, 371, 33–46.

- (8) Ferreira, E. M.; Alfenas, A. C.; Maffia, L. A.; Mafia, R. G.; Mounteer, A. H. Effectiveness of systemic fungicides in the control of *Quambalaria eucalypti* and their effects on production of eucalypt mini-cuttings for rooting. <u>*Crop Prot.*</u> 2008, 27, 161–170.
- (9) Klopman1, G.; Ptchelintsev1, D. Antifungal triazole alcohols: a comparative analysis of structure-activity, structure-teratogenicity and structure-therapeutic index relationships using the Multiple Computer-Automated Structure Evaluation (Multi-CASE) methodology. *J. Comput. Aid. Mol. Des.* 1993, 7, 349–362.
- (10) Berg, D. Biochemical mode of action of fungicides. Ergosterol biosynthesis inhibitors. In *Fungicide Chemistry: Advances and Practical Applications*; Green, M. B., Spilker, D. A., Eds.; ACS Symposium Series 304; American Chemical Society: Washington, DC, 1986; pp 25–51.
- (11) Hubele, A.; Riebli, P. Arylphenyl ether derivatives, compositions containing these compounds and use thereof. U.S. Patent 5266585, 1993.
- (12) Hubele, A.; Riebli, P. Novel microbicidal arylphenyl ether derivatives. GB 2098607, 1982.
- (13) Lima, L. M. A.; Barreiro, E. J. Bioisosterism: a useful strategy for molecular modification and drug design. <u>*Curr. Med. Chem.*</u> 2005, 12, 23–49.

- (15) Jian, F. F.; Xu, L. Z.; Hu, Z. Q.; Zhu, Q.; Yu, G. P. Synthese and biological activities of novel triazole compounds containing a aromatic ether group. CN 101225074, 2007.
- (16) Cowper, R. M.; Davidson, L. H. Phenacyl bromide. Org. Synth. Collect. 1943, 2, 480.
- (17) Li, H. H.; Liao, F. G.; Wang, P.; Gao, Y. X. Preparation of fungicide difenoconazol. <u>*Trans. Beijing Inst. Technol.*</u> 2006, 26, 365–368 (in Chinese).
- (18) Kohler, E. P.; Chadewell, H. M. Benzalacetophenone. Org. Synth. Collect. **1922**, 2, 1.
- (19) Gozzo, F.; Carelli, A.; Carzaniga, R.; Farina, G.; Arnoldi, A.; Lamb, D.; Kelly, S. L. Stereoselective interaction of tetraconazole with 14α-demethylase in fungi. <u>*Pestic. Biochem. Physiol.*</u> 1995, *53*, 10–22.
- (20) Hansch, C.; Leo, A.; Hoekman, D. *Exploring QSAR*; ACS Professional Reference Book; American Chemical Society: Washington, DC, 1995.

Received January 20, 2009. Revised manuscript received April 16, 2009.